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We consider a model of a chemical reaction where the transition is possible only if the environment of the
reacting complex attains a certain configuration. For example, electron transfer between two electronic states
occurs when a fluctuation of the environment brings these states into resonance. Non-Poisson statistics of
reactive events may lead to nonexponential kinetics characterized by short- and long-time rate constants. The
transition from the nonadiabatic to adiabatic (environment-controlled) regime of the reaction is shown to have
different character in the cases of attractive and repulsive statistics.

PACS number(s): 02.50.—r, 05.40.+j, 82.20.Fd

It has been realized, both experimentally [1] and theoreti-
cally [2—7] that an elementary chemical reaction will exhibit
nonexponential kinetics if the relaxation time of the environ-
ment of the reaction complex is slower than or comparable
with the time scale of the reaction itself. The limit where the
relaxation time is infinite is the well understood case of an
inhomogeneous environment or ‘“‘static disorder” that leads
to a distribution of reaction rates (see, e.g., [2—4]).

The regime of “dynamical disorder” where fluctuations
of the environment occur on a time scale comparable with
that of the reaction itself is not so well understood. Zwanzig
[5] proposed a procedure to treat rate processes with dynami-
cal disorder in the case where rate fluctuations are described
by a Markovian process. Chandler et al. [6] discussed non-
exponential kinetics due to rate fluctuations using a cumulant
approximation. Recently Wang and Wolynes [7] set forth a
path integral formalism to obtain population kinetics in the
general case where the reaction and environmental relaxation
occur on similar time scales. They introduced a ““survival
path” followed by the environment in order to produce the
dominant contribution to the kinetics and applied their for-
malism to cases with moderate dependence of the reaction
rate on the environmental coordinates, such as ‘“‘geometrical
bottlenecks.”

In this Rapid Communication we propose a different lan-
guage suited to describe the case of a very sharp dependence
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of the rate on the environmental variables (that is, the reac-
tion only happens when the environment assumes a favor-
able configuration). In this case the continuous stochastic
process can be mapped onto a sequence of points corre-
sponding to such favorable configurations in much the same
way as a discrete Poincaré map provides a convenient de-
scription of chaotic systems that are continuous in time. We
describe reactions in fluctuating environments in terms of
statistics of reactive events, i.e., occurrences of the favorable
configurations that allow the reaction to proceed.

The examples where such a physical situation is realized
are abundant in chemistry and physics. A recent example was
given by Chandler et al. [6] and Gehlen et al. [8] in connec-
tion with the primary charge transfer in photosynthesis. Fol-
lowing these papers, consider two electronic states, the en-
ergy gap between which, e(¢), is a stochastic variable that
depends on the configuration of the environment. Suppose
for simplicity that the transition from the initial to the final
state is irreversible. The “reactive event” in this case is zero-
crossing: whenever £(¢)=0 the two states are on resonance
and the transition from the initial to the final state occurs
with probability p. Two models will be considered, in which
p is a constant (model 1) or depends on the crossing velocity
e€(t) according to the Landau-Zener formula,
p(8)=1—exp(—a/|¢]) (model 2). For electron transfer « is
proportional to the square of the coupling matrix element
between the electronic states.
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FIG. 1. Distribution function of the time interval between two
adjacent reactive events obtained from Monte Carlo sampling the
Gaussian-correlated process (markers). The solid line is the unnor-
malized analog of this function [given by the second time derivative
of Eq. (4)] for the Ornstein-Uhlenbeck process.

Model 2 is generally more realistic but model 1 is usually
easier to solve. Replacing € by a constant effective velocity
model 2 becomes model 1; the conditions under which this
can be done will be discussed below.

For model 1 the probability to survive in the initial state is
given by

S(6)=((1—p)¥N?y, (1)

where N(t) is the number of reactive events during time ¢
and (- - -) indicates ensemble averaging. Note that this quan-
tity coincides with the standard definition of the characteris-
tic function of a random point process, g(u)=(exp(iuN)), if
iu=In(1—p). For a stationary stochastic process (N(f))
grows linear in time so if the operations of averaging and
raising to a power could be interchanged, we would get the
survival probability, S(¢#)=(1-— YN to decay exponen-
tially in time. In a more realistic case energy crossings are
considered independent of one another such that N(¢) obeys
Poisson statistics with the probabilities to have N crossings
in the time interval ¢ equal to p(N)=(t/7)Nexp(—t/7)/N!,
where 7 is the average time interval between two reactive
events. The survival probability is exponential in this case
[8], S(#) =exp(—pt/7). The statistics of crossings can be con-
sidered Poisson if the time 7 is much greater than the corre-
lation time of energy gap fluctuations, 7., and otherwise
correlations between crossings will lead to nonexponential
behavior of S(¢) which will be the subject of the following
analysis.

In this preliminary report of our results we assume &(¢) to
be a stationary Gaussian random variable with zero mean
and the correlation function A(¢t—1t')=(e(t)e(t')). A de-
tailed account of our work including the nonsymmetric case
(e)#0 will be given elsewhere. For a Gaussian process,
the averaging operation can be understood as a path integral

(- )= f D[e(t)](-- -)exp( - %fotfotdt'dt"B(t'

—-t")e(t')s(t")), 2

FIG. 2. Typical sequences of zero-crossings for the Gaussian-
correlated (upper five sequences) and Ornstein-Uhlenbeck (lower
five sequences) noise.

where B(¢) is the kernel of the integral operator inverse to
A(?) (see, e.g., [10]). In practice, Eq. (2) is evaluated by
expanding £(¢) in a Fourier series and Monte Carlo sampling
of the resulting multidimensional Gaussian integral.

Calculating the full distribution of zero-crossings, p(N),
is a formidable task; one might hope though that by studying
the most important pairwise correlations between reactive
events and approximately extrapolating to large N’s the
qualitative picture will be captured. Specifically, the behavior
of S(#) is qualitatively different in the cases of attraction of
reactive events (i.e., where the crossings tend to occur in
clusters) and repulsion (where two reactive events cannot
subsequently happen during a short time). Introducing the
distribution of time intervals between two successive cross-
ings, G(t), the repulsive statistics are indicated by
G(0)=0, while in the attractive case G(¢) is a monotoni-
cally decreasing function. An example of attractive statistics
is the Ornstein-Uhlenbeck process( see, e.g., [11,12]),
A(t—t")=D exp(—t/7,)/7,, while the Gaussian-correlated
noise, A(t—t')=D exp[—(t/7.)*]/7., exhibits repulsive sta-
tistics, as demonstrated in Fig. 1.

The Ornstein-Uhlenbeck process. Although this is a Mar-
kovian process, the statistics of zero-crossings are not de-
scribed by the Poisson law. The average number of crossings
(N(t)) is infinite, as indicated by the formula [12]

(N(2))=|A"(0)/A0)| Yt/ m=1t/7. 3)

However, this does not lead to an infinitely fast decay for
two reasons: First, most of the crossings occur with infinite
velocity such that the Landau-Zener probability of transition
is zero; this argument shows that model 1 cannot be used in
place of model 2 for this case. Second, although
(N(t))=o0, the probability that no crossings occur during
the time ¢ is nonzero and given by [12,9]

S (t)=(2/m)sin" Y[exp(—t/7,)]. 4)

This is a manifestation of the attractive statistics: the reactive
events tend to occur in infinitely dense clusters which are
separated by long (on the order of 7.) time intervals (see Fig.
2).

In fact, the survival probability S(¢) becomes S.(¢) in the
limit of p—1 or «— <, since even a single crossing leads to
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FIG. 3. Survival probability obtained by Monte Carlo sampling
of Eq. (5) plotted as a function of time for the Ornstein-Uhlenbeck
process with D=16, 7.=1, and a«=3.5 (filled circles), 14.1 (tri-
angles), and 630 (hollow circles). The solid line is the analytical
result for the environment-controlled regime Eq. (4). Inset: the
same data replotted on a semilogarithmic scale.

the complete population transfer. This is the limit of
environment-controlled reaction whose rate is independent
of p. At long times S.(¢) describes an exponential decay
with the rate 1/7.; this can be thought of as the rate of
entering or leaving a cluster.

Consider next the short-time behavior of S(#). In model
2, the survival probability

S(t)=<exp( —ajz_l |éjl_1)>

=<exp(~af;dt’5(s(t’)))> (5)

can be represented as a double series both in ¢ and in a:

S(t)= 1—§ (277)"n' fdt1 Jdtj dNq--

XJ'jwd)\n<exp(;1 i)\ks(tk))>, (6)

where the spectral expansion of the & function has been used.
For the Ornstein-Uhlenbeck case this series is calculated to
be of the form

S(t)=1—(r.27D) Pat+(271.)*?a?**/(3wD)+ - - -
(7)

such that the short-time rate constant k£(0)=—S(0) is equal
to (7./2mD)"a. In the environment-controlled case this
rate becomes infinite. Another important quantity is the long-
time rate limit, k(%)= —lim,_,,[S(¢)/S(¢)]. As seen from
Fig. 3 for small « S(¢) decays exponentially for all times,

t/‘rc

FIG. 4. Survival probability obtained by Monte Carlo sampling
of Eq. (5) plotted as a function of time for the Gaussian-correlated
process with D=16, 7.=1, and a=3.5 (filled circles), 6.3 (tri-
angles), and 630 (hollow circles). Inset: the same data replotted on
a semilogarithmic scale.

k(0)~k(x), while in the environment-controlled limit
k()=1/7,<k(0). We found that the formula

k()1 =k(0)" '+ 7, ®

works well for arbitrary « reproducing the above limiting
cases. This expression can be obtained from the following
heuristic reasoning: Consider an ensemble of realizations of
the random noise £(¢). At a given time ¢ £(¢) can either be
in the “cluster state” corresponding to frequent crossings or
outside a cluster, in the ‘“‘nonreactive state.”” In order for the
transition to occur, the “cluster state” should be attained,
which happens with the rate 1/7.. Being in the cluster state,
the transition back to the nonreactive state can happen with
the rate 1/7, or the reaction can occur with the rate £(0),
such that the fraction of clusters participating in the reaction
is k(0)/[k(0)+ 7, ']. Multiplying this by the probability of
entering a cluster one obtains Eq. (8). In fact, this equation is
known in the context of solvent-controlled electron transfer
[13]; what we have shown is that its validity relies heavily on
the “clustering” of the reactive events, which is indicated by
the singularity of derivatives of the correlation function and
is a consequence of the Markovian character of the noise.
Since in reality such a singularity should always be
smoothed, special consideration should be given to the non-
Markovian case where A(¢) is regular at r=0.
Gaussian-correlated noise. In this case, unlike the
Ornstein-Uhlenbeck process, model 1 provides a good ap-
proximation to model 2, since the reactive events do not
cluster (see Fig. 2) and the effective crossing velocity is a
well-defined quantity. From the numerical data of Fig. 4 we
find that (i) k()>k(0) and (ii) at short times S(#) decays
linearly rather than exponentially. The second finding is
readily understood: For a time ¢ short enough
p(1)=t/7, p(0)=1—p(1l) and p(N>1)~0 because, as
seen from Fig. 1, two successive crossings are an unlikely
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event. From Eq. (1) then one obtains the linear dependence
S(t)=~1—k(0)t where k(0)=p/T. ‘

The short-time rate constant k(0) for model 2 can be
found exactly [9] along the lines of Zusman [14]; those deri-
vations suggest that the transition probability can be set con-
stant p=1—exp(—a/|€ ), where the effective crossing ve-
locity is constant for small a and increases weakly, &.sf
xal”, for a— oo,

To find the long-time rate we resort to the approximation
of “nonapproaching points” [12]. In this approximation the
repulsion of the reactive events is characterized by the
correlation coefficient R(t,—t)=1—72f,(t1,t,) Where
f2(t1,t3) is the joint probability density to encounter cross-
ings at the moments ¢; and ¢,, a quantity that can be evalu-
ated using the techniques described in [12,9]. Using the char-
acteristic function given in [12] one obtains from Eq. (1)

S(t)= exp( fotdt

with the long-time rate limit given by

,In(1— k(0)[odt"R(¢' —1t"))
Jodt"R(t' —1¢")

) )

k(e)=T; 'In[1—-k(0)T.], Tc=f°° dt R(t). (10)

In the case of the Gaussian-correlated noise we found nu-
merically that T.~0.4777, and the current approximation
reproduces the correct long-time behavior with accuracy
within a few percent. According to Eq. (10), for positive T,
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the long-time decay of S(¢) is faster than the short-time de-
cay, the result confirmed by our numerical data in Fig. 4.
This is in contrast to the Markovian case where the decay is
fastest at short times. One arrives at the same conclusion by
analyzing the cumulant approximation of Ref. [6], which can
be obtained by truncating and exponentiating the series of
Eq. (6).

To conclude, we have shown that non-Poisson statistics of
reactive events lead to nonexponential behavior of the sur-
vival probability at times shorter than the correlation time of
the noise, 7. . Depending on whether the reactive events tend
to attract or repel one another, the decay rate decreases or
increases as time evolves until the exponential decay sets in
with a constant rate k(). As the parameter « that controls
the transition probability p increases, transition from the
“nonadiabatic regime’ where k(®)x a to the environment-
controlled regime where k(%) is independent of a occurs.
This transition is qualitatively different in the case of attrac-
tive and repulsive statistics as seen by comparing Egs. (8)
and (10). In the first case the transition is determined by the
competition of the ““electronic’ transition and the processes
of entering or leaving a cluster, while in the second case this
is essentially a Landau-Zener-type transition which occurs as
p—1 (a—x).

We are grateful to Rob Coalson, Yuri Dakhnovskii, Igor
Kurnikov, Bob Mazo, and Leonid Zusman for useful com-
ments and discussions.
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